
Ruperto Carola University Heidelberg

Faculty for Mathematics and Computer Science

Bachelorthesis to the topic:

Sharkovsky’s Theorem
A direct proof and further observations
Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of
Bachelor of Science

Author
Caroline M. Edmaier
Blumenthalstraße 23

69120 Heidelberg
Matrikelnummer: 3314820

Supervisor
Professor Peter Albers

Supervisor
Irene Seifert

Handover date
2019 - 05 - 29





Sharkovsky’s Theorem

A direct proof and further observations

Caroline M. Edmaier

Abstract

We present a proof by Keith Burns and Boris Hasselblatt1 for Sharkovsky’s famous theorem
regarding possible sets of periods for interval maps. Their proof improves the former proof
through the introduction of Štefan sequences. Furthermore we present some observations
on the family of truncated tent maps, which are used by Burns and Hasselblatt to prove
the Sharkovsky realization theorem.

Zusammenfassung

Wir präsentieren einen Beweis von Keith Burns und Boris Hasselblatt1 für Sharkovskys
berühmten Satz über mögliche Mengen periodischer Punkte von Interval-Abbildungen.
Ihr Beweis verbessert vorherige Beweise durch die Einführung von Štefan Sequencen.
Weiterhin stellen wir einige Beobachtungen bezüglich der Familie von abgeschnittenen
Zelt-Funktionen vor, welche von Burns und Hasselblatt zum Beweis des Realisierungssatzes
herangezogen werden.

1 [2], 2011
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1 Introduction

In the late 1970’s the american mathematician James A. Yorke was attending a river
cruise during a congress in East Berlin. Together with his colleague Tien-Yien Li he had
just published his groundbreaking paper “Period three implies chaos” [5], which states
that any one-dimensional continuous function f from R into itself with a 3-period orbit
has the following two key properties:
Firstly for any integer T there is one point in R, that is mapped on itself again after T
iterations of f . Secondly such a function produces an uncountably infinite set S that is
scrambled, meaning any two points in S get arbitrarily close and further apart again and
again when applying the function.
With the second part they should contribute largely to the mathematical notion of chaos
and introduce their ideas about the topic to a wider audience, making it one of the most
popular parts of mathematics, even finding its way into mainstream media.

So now Yorke happened to be on a boat somewhere behind the iron curtain, that divided
the eastern and western hemisphere during that time, resulting in little to no exchange
between scientists of all disciplines. A Ukrainian mathematician called Oleksandr M.
Sharkovsky, who was taking part in the same congress, used the opportunity to approach
Yorke. Despite communicational problems due to the lack of a common language, their
talk resulted in Yorke being made aware that his results on periodic points of interval
mappings had already been discovered by Sharkovsky, in fact more than ten years earlier.
Sharkovsky’s version of the theorem was even more powerful, introducing the so called
Sharkovsky order on the natural numbers, in which 3 happens to be the first number.
He could prove that for any one-dimensional continuous function, the presence of an
m-period orbit was a sufficient criterion for finding l-period orbits for any l smaller than
m in Sharkovsky’s order.

The incidental encounter of these two mathematicians should lead to global recognition
of Sharkovsky’s work and multiple approaches to simplify the proof of what would now
be called Sharkovsky’s theorem. A first breakthrough consisted in the introduction of so
called Štefan cycles by P. Štefan.
In this thesis we want to present a further simplification of the proof, first published in
2011 by Keith Burns and Boris Hasselblatt [2]. The genius of this proof lies in the notation
of Štefan sequences which are inspired by the notation of Štefan cycles but represent a
slightly more general version.

There is however a second part of Sharkovsky’s theorem, the Sharkovsky Realization
Theorem which, in a sense, completes the statement described above in a quite astounding
way. The proof for this second proposition, presented in [2] (and therefore also in this
thesis), makes use of a certain family of functions, the family of truncated tent maps. As
part of this thesis we will introduce some observations on this family that make use of
Sharkovsky’s theorem. Furthermore we use this family as an example to show how the
theorem beautifully fits into the theory of chaos that was developed in the 1960’s and
70’s.
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1 INTRODUCTION

We hope that by now we evoked interest in how to prove this striking theorem whose
history, in a way, conveys the value of global exchange and collaboration in science.
We ask the reader kindly to enjoy this beautiful piece of mathematics.
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2 Definitions and statement of the theorem

Let f be a continuous function from some interval I into itself. The interval upon which
f is defined does not necessarily need to be closed or bounded so whenever we are talking
about an interval in this paper what we mean is a connected subset of R, in some cases
even R itself. We can call such a function a discrete dynamical system, as the fact that I
is mapped into itself again allows us to look at iterations of f . By fn we denote

f ◦ · · · ◦ f︸ ︷︷ ︸
n times

where f0 corresponds to the identity. In such a system one iteration of f corresponds to
one step in time and a point x in the interval corresponds to one possible initial state of
the system.

The Sharkovsky Theorem is a stunning result about a special kind of points in I, namely
those points x ∈ I that are mapped upon themselves again after a certain number of
iterations:

∃n ∈ N : fn(x) = x

We call such points periodic points. Furthermore we refer to the set of iterates

O := {fm(x)|m ∈ N}

of a periodic point x as the cycle or orbit of x. Lastly we call the smallest number m ∈ N
such that x is mapped upon itself again after m iterations the period of x and we say the
number m is a period for f whenever there is a periodic point x with period m.

Given a dynamical system one may wonder, what periods the underlying function has. As
pointed out in the introduction, this question is of relevance to how chaotic the system is.
Sharkovky’s theorem sheds some light on this question, as it provides us with a result
on the structure of periodic points. This structure is given by the following order on the
natural numbers, the Sharkovsky order.

2.1 The Sharkovsky Theorem

Definition 2.1. Take N the set of all positive integers. We can reorder the natural
numbers in the following way:

3 C 5 C 7 C · · · C 2 ·3 C 2 ·5 C 2 ·7 C · · · C 22 ·3 C 22 ·5 C 22 ·7 C · · · C 23 C 22 C 2 C 1.

This total ordering is called the Sharkovsky order. The following doubling property of
this order is important to us, as it is needed to conclude the proof that we give:

for l,m ∈ N : l C m ⇐⇒ 2l C 2m

We encourage the reader to verify this statement on their own in order for them to gain
some insight in how the Sharkovsky order works.
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2 DEFINITIONS AND STATEMENT OF THE THEOREM

This definition allows us to state Sharkovsky’s theorem which consists of the following
two parts:

Theorem 2.2. The Sharkovsky Forcing Theorem. If m is a period for f and l C m,
then l is a period for f aswell.

This is already an astonishing result as it indicates the set of periodic points of some
function f to be a tail of the Sharkovsky order. By tail we mean a set T ⊆ N such that
every number that does not lie in T is greater in the Sharkovsky order than every number
that does lie in T .
We can distinguish between three different kinds of tails, namely {m} ∪ {l ∈ N : l C m}
for some m ∈ N, {2k : k ∈ N} the set of all powers of two and ∅.
With this notion we can formulate the second part of the theorem which is even more
striking:

Theorem 2.3. The Sharkovsky Realization Theorem. Every tail of the Sharkovsky
order is the set of periods for some continous map of an interval into itself.

Now the Sharkovsky theorem is the union of both these statements, namely that a subset
of N is the set of periods for f if and only if it is a tail of the Sharkovsky order.

The next five sections are dedicated to proving theorem 2.2, the Sharkovsky forcing
theorem. As already mentioned, we are not discussing the original proof as stated by
Sharkovsky himself, but a simplification of the standard proof after Keith Burns and Boris
Hasselblatt found in [2]. Theorem 2.3, the Sharkovsky realization theorem, is proven
in section 8 in a more than elegant way., that is extracted from the same paper as the
former one.

11



3 Foundation: Interval coverings and cycles

Before we start with cycles of continuous maps we first take a look at intervals and interval
coverings. The main idea of the proof is to not use the given cycle directly but to derive
intervals from the points of the cycle and find covering relations between these intervals
that can be used to build new covering relations. In this section we are going to see that
a certain kind of covering relation gives rise to periodic points, which enables us to prove
the existence of cycles of length smaller in the Sharkovsky order than the one of the cycle
given. We begin by introducing our notion of covering relations.

Definition 3.1. Let J0, ..., Jn−1 be Intervals. By that we will always mean closed, bounded,
connected subsets of R.

(i) We say J0 covers J1 under f or write J0
f→ J1 if J1 ⊆ f(J0).

In case J0 = f(J1) we write J0
f
� J1.

(ii) A series of covering relations J0
f→ · · · f→ Jn−1

f→ J0 that starts and ends in the
same interval is called a loop (or n-loop) of intervals.

(iii) We say that a point x ∈ J0 follows the loop if
f i(x) ∈ Ji for i = 0, . . . , n− 1 and fn(x) = x.

(iv) An n-loop of intervals is called elementary if every point that follows it has period n.

3.1 Coverings produce cycles

Now this provides us with the vocabulary needed to formulate the main proposition of
this section, which will later form a key part of the proof:

Proposition 3.2. Given an elementary n-loop of intervals J0
f→ · · · f→ Jn−1

f→ J0 there
exists a point x ∈ J0 that follows the loop and has period n.

Proof: To conclude the statement it is sufficient to show that for a given n-loop there is a
point that follows it. The loop being elementary implies the proposition as given above.
We start off by showing this statement first for the special case n = 1, which means
nothing more than an interval covering itself has a fixed point. We then proceed with the
general case, making use of the first statement.

Case 1: Let a1, a2 ∈ I such that [a1, a2]
f→ [a1, a2].

We want to show that the function f(x)− x has a zero in [a1, a2]. Choose b1, b2 ∈ [a1, a2]
such that f(b1) = a1 and f(b2) = b2 . As b1 > a1 it holds that f(b1)− b1 > 0 and equally

12



3 FOUNDATION: INTERVAL COVERINGS AND CYCLES

J

K

f

[ ]
I

Figure 1

f(b2)− b2 6 0 . As f and therefore f − id is continuous we can conclude the statement
by the intermediate value theorem.

Case 2: Now let J0
f→ · · · f→ Jn−1

f→ J0 be an arbitrary n-loop of intervals.

The idea now is to transform the loop into a series K0

f
� · · ·

f
� Kn−1

f
� J0. Then for

any point x in K0 it holds true that f i(x) ∈ Ki ⊆ Ji. Furthermore K0
fn→ J0 and K0 ⊆ J0

imply K0
fn→ K0. Hence we can conclude the existence of a fixed point fn(x) = x through

case 1.

What we need to show now is that for any intervals I and J it is possible to transform a
covering relation I → J into a covering relation K � J for some K ⊆ I:
To find such a K first take f−1(J). This consists of several components. As f is continuous
and I covers J we are able to find one component K such that f(K) = J as we can also
see in figure 1.

We conclude the proposition by transforming the relation Jn−1 → J0 and proceeding
inductively to the front to obtain a series of relations as desired.

�

Now this gives us the opportunity to conclude the existence of periodic points of period l
given that there exists an elementary l-loop of intervals. To find such loops, we will need
some criteria to determine whether a loop of intervals is elementary. This is what the
next lemma is about.

Lemma 3.3. An n-loop of Intervals J0 → · · · → Jn−1 → J0 is elementary if the following
two conditions are met:

(i) The loop is not followed by either endpoint of J0.

(ii) The interior of J0 is disjoint from the other intervals: Int(J0) ∩
⋃n−1
i=1 Ji = ∅
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3.2 Cycles produce coverings

Proof: This statement can be conlcuded fairly easily. Let x ∈ J0 be a point that follows
the loop.

(i) implies, that x can not be either endpoint of J0 as those do not follow the loop and
therefore has to lie within the Interior of J0.
By (ii) x itself cannot lie in any of the Ji for 1 6 i 6 n− 1, where its iterates under f
because of x following the loop. Therefore the first iteration of x under f that coincides
with x again has to be fn(x).

Therefore the period of x is n, the lenght of the loop of intervals given and the loop is
proven to be elementary as x was chosen arbitrarily.

�

3.2 Cycles produce coverings

In the next section we see a special case of the theorem, when we provide a proof for the
case m = 3: "Period three implies all periods."
From now on we are only going to work with O-intervals, which refer to intervals with
endpoints in a cycle O. Thereby we only need to use information of how f acts on the
cycle O.
Furthermore we are exclusively going to discuss relations I → J of O-intervals that are
O-forced. By this we mean that the O-interval with endpoints the leftmost and rightmost
points of f(O ∩ I) is a superset of J. The continuity of f and the intermediate value
theorem then imply the covering relation I → J . Later on this notation is going to simplify
the finding of covering relations of intervals as we only need to consider where the points
of the cycle are mapped under f .
Lastly we call a whole loop of intervals O-forced if every arrow in it is O-forced.

14



4 EXAMPLES

J0 J1[ ][ ]

x0 x1x2

J0J1 [ ][ ]

x0x1 x2

Figure 2: The two versions of 3-cycles

4 Examples

In this section we have a look at two examples, namely the most iconic special case of
the Sharkovsky Theorem ("Period 3 implies all periods"), that had also been proven by
Yorke and Li, and the example of a 6 cycle. These two cases use different approaches and
will shed light on the underlying logic of the two cases that we are going to discuss in
sections 5, 6 and 7.

4.1 Period 3 implies all periods

Given a 3-cycle there are just two different ways that the points of the cycle can be
ordered. As one can easily see in Figure 2, those two versions are mere mirror images of
each other.

The cycle consists of three points x0, x1 and x2 such that

f(x0) = x1, f(x1) = x2 and f(x2) = x0

as the dashed arrows indicate. We now choose J1 to be the O-interval with endpoints x0
and x1 and J0 the O-interval with endpoints x0 and x2. As already indicated in section 3
our first task is to observe what covering relations exist between these two intervals.

First we take a look at the image of J1. As its endpoints are mapped to the endpoints of

the whole interval, we obtain the O-forced covering relations J1 → J1 and J1 → J0.

Secondly we observe that the endpoints of J0 are mapped to those of J1 whereby we can

conclude the O-forced covering relation J0 → J1.

We summarize these relations by writing

x J1 � J0.

To conclude the proof we are now going to construct elementary loops of length l using
these relations. Proposition 3.2 is then going to provide the existence of a periodic point
with the corresponding period.

15



4.2 One example of a 6-Cycle

l = 1: This case can easily be concluded by Case 1 of 3.2 using the covering relation
J1 → J1, which directly provides us with a fixed point.

l = 2: From the above image we can read off the loop

J0 → J1 → J0

It remains to show that this loop is elementary.
First of all the interior of J0 does not meet J1 simply by construction and secondly
the endpoints of J0 are chosen to be part of the cycle whereby they are periodic
points of period 3 and cannot follow the loop as f2(xi) 6= xi for i = 0, 1, 2.
This way we obtain a periodic point of period 2.

l > 3: For an l-loop of intervals of length greater than 3 we use the fact that J1
covers itself, whereby we can just insert l − 1 copies of this arrow into the loop
above, obtaining the l-loop

J0 → J1 → · · · → J1︸ ︷︷ ︸
l−1 copies of J1

→ J0

Again the interior of J0 does not meet J1 as argued before. If we take a look at
the iterates of the endpoints of J0 we observe that after two iterions in case of x0
or one in case of x1 they are mapped to x2, which does not lie within J1. There
being at least three copies of J1 in the middle of the loop makes it impossible for
the endpoints of J0 to follow the loop. This concludes the proof.

�

The idea to first observe some covering relations and then build elementary l-loops for
all l C m is going to be generalized in sections 5 and 6 by introducing the notion of so
called Štefan sequences. However this kind of sequence cannot be found in any cycle. We
are going to see one example now where the method introduced in these later sections
will not be applicable. In this special case we are providing an alternative proof of the
Sharkovsky forcing theorem making use of the doubling property of the Sharkovsky order
introduced in [add ref to def].

4.2 One example of a 6-Cycle

We consider the 6-cycle given in Figure 3. Looking at the cycle we make the observation
that the set of points on the left and the set of points on the right are mapped upon each
other under f , forming two 3-cycles for the second iterate f2.

As we have already seen in the example before this accounts to saying that we can
construct an elementary l-loop for any given l ∈ N. We can now define J0 and J1 the
same way, obtaining the following three cycles:

16



4 EXAMPLES

[

[

[

[

]

]

]

]

J ′0

J ′1
J0

J1

x0 x1

Figure 3: An example of a 6-cycle

(1) J1
f2→ J1 (2) J1

f2→ J0 (3) J0
f2→ J1

Our idea is to make use of the doubling property of Sharkovsky’s Order, telling us that

∀l ∈ N : l C 3 ⇐⇒ 2l C 6

With that in mind we only need to transform every elementary l-loop of f2 into a 2l-loop
of f .

To achieve this we are going to define the two Intervals J ′0 and J ′1 to be the shortest
intervals containing f(J0 ∩ O) or respectively f(J1 ∩ O).

Observing where the endpoints of J ′0 and J ′1 are mapped we can also conclude the O-forced
covering relations

(1′) J ′1
f→ J1 (2′) J ′1

f→ J0 (3′) J ′0
f→ J1.

By construction we additionally gain the following O-forced covering relations

J0
f→ J ′0 and J1

f→ J ′1.

Now given any elementary l-loop of f2 we can just replace the covering relations of the
form

Ji
f2→ . . .

by the relations
Ji

f→ J ′i
f→ . . . .

This shows, how we can transform an elementary l-loop of f2 into an 2l-loop of f . What
remains to show is that an 2l-loop constructed this way gives rise to a 2l-periodic point.

To ensure this we just need to observe two facts: first of all, the iterates under f2 have to
be pairwise distinct, as the l-loop they follow is elementary. Secondly the iterates under f
lie on alternating sites, ensuring, that altogether all 2l iterates under f are distinct. In
conclusion a point that follows the l-loop under f gives rise to a 2l-periodic point under f .
This concludes the proof as stated above.
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4.2 One example of a 6-Cycle

�

These examples of Sharkovky’s theorem give an idea of the underlying logic of the proof.
In the next sections we will discuss the general case and finally conclude the statement
given in section 2.
We will proceed now by introducing Štefan sequences and show how this special kind
of sequence produces cycles in a way similar to the case of period 3. Again our way to
go will be to observe a handful of O-intervals and covering relations between them and
to then build loops of the desired length. In fact this already concludes the proof in the
cases where we are able to find a Štefan sequence.

18



5 ŠTEFAN SEQUENCES PRODUCE CYCLES

5 Štefan sequences produce cycles

5.1 Definition of a Štefan sequence

From now on let m > 2 and O an m cycle for our continuous map f on the interval
I. The case of m = 1 is vacuously true, as there is no number smaller than 1 in the
Sharkovsky order. Before we proceed as indicated in the end of the last section we first
need to introduce some notation that will then allow us to define a Štefan sequence:

Definition 5.1. We first introduce the points p and q as the middle points of the cycle O
in the sense that p is the rightmost point such that f(p) > p and q the point to its
immediate right. This allows us to talk about the center of the cycle by which we mean
the point c := (p+ q)/2.

Furthermore we will want to talk about the points of the cycle between a given point of
O and the center. We will notate this set in the folling way: For x ∈ O define Ox ⊆ O by:

Ox := O ∩ [x, p] in case x 6 p

Ox := O ∩ [q, x] in case x > q

We finally say a point x ∈ O switches sides if the center c lies between x and f(x).

The core idea behind a Štefan sequence is to mantain a series of points in O that are
spiraling outwards starting next to the center defined as above. This gives rise to a
corresponding series of intervals spiraling outwards as well, which is how we are going to
ensure some of the desired covering relations later on. But first let us introduce the exact
notion of a Štefan sequence with this idea in the back of our head:

Definition 5.2. A sequence x0, . . . xn of points in O is called a Štefan Sequence if the
following four conditions are satisfied:

(Š1) {x0, x1} = {p, q}

(Š2) x0, . . . , xn are on alternating sides of the center c and the sequences (x2j) and
(x2j+1) are both strictly monotonous and therefore moving away from c.

(Š3) For 1 6 i 6 n− 1 xj switches sides and xj+1 ∈ Of(xj).

(Š4) xn does not switch sides.

19



5.2 Proving the theorem through Štefan sequences

Now this definition comes with a handful of implications:
First of all what the condition xj+1 ∈ Of(xj) in (Š3) basically says is that the next point
in the series will be chosen to lie on the same side as the image of the last one under f ,
but possibly closer to the center.
Furthermore (Š2) implies that the points x0, . . . , xn are pairwise distinct. This ensures,
that n+ 1 6 m, meaning the quantity of the series can not exceed the number of points
in the whole cycle. There are cases where a Štefan sequence consists of the entire cycle,
but this does not necessarily have to be the case.
Finally we want to note that n > 2, which is implied by (Š1) and (Š4) together and hence
the cycle must consist of at least 3 points. We have already discussed the case m = 1. If
m = 2 we just need to find a fixed point of f to conclude the proof, which is provided by
Case 1 of Proposition 3.2.
An example for a Štefan sequence is provided in the next subsection through figure 5.

Next up we see how such a series gives rise to a series of intervals and how these can be
used to conclude the theorem.

5.2 Proving the theorem through Štefan sequences

Now as already stated we are going to prove the Sharkovsky theorem provided that the
cycle we begin with has a Štefan sequence, so this section will consist of the proof of the
following proposition. In figure 5 there is an example of a 9-cycle with a Štefan sequence
and the corresponding intervals. We will keep referring to this example in order for the
reader to have an image in mind. Later on we will also see the algorithm used to find the
Štefan sequence in this example, but for now we content ourselves with its existence.

Proposition 5.3. Suppose that the m-cycle O has a Štefan sequence. If l C m, then f
has a periodic point with least period l.

Proof: Given a Štefan sequence x0, . . . , xn in O we can define the O-intervals J0, . . . , Jn−1
in the following way:

1 6 i 6 n− 1 : Define Ji to be the smallest interval, such that

x0, x1 ∈ Ji and xi ∈ Ji.

j = 0 : Define J0 to be the interval with endpoints xn and xn−2.

By construction and using (Š2) we can already conclude that Int(J0) ∩
⋃n−1
i=1 Ji = ∅, as

xn−1 does not lie on the same side as xn and xn−2 and hence given the monotony of
both sides there is no point between xn and xn−2. To further clarification consult figure 5,
where the intervals J0, . . . , J5 are derived from the Štefan sequence given in the described
manner.

20



5 ŠTEFAN SEQUENCES PRODUCE CYCLES

J0

J1

Jn−5

Jn−4

Jn−3Jn−2

Jn−1

. . .

Figure 4: Diagram summarizing the covering relations

This definition leads us to observing the following O-forced covering relations, summarized
in Figure 4:

(1) J1 → J1 and J0 → J1

(2) J1 → J2 → · · · → Jn−1 → J0

(3) J0 → Jn−1, Jn−3, . . .

Our first goal is to understand where these covering relations come from:

(1): We will show even more, namely that Ji → J1 for i = 0, . . . , n − 1. As J1 is the
O-interval with endpoints x0 and x1 it suffices to show:

x0, x1 ∈ f(Ji) for i = 0, . . . , n− 1.

In the case of i = 0 one endpoint of J0 switches sides, whereas the other one does not.
As both points where on the same side before, their images under f will therefore
be located on opposite sides of the center.
The same holds true for the cases where i > 1, as here both points lay on opposite
sites, but then again both switch sides in the process of applying f . To sum up
f(Ji) contains points of O on both sides of the center c and therefore at least x0
and x1, therefore covering the interval J1.

(2): As argued before it will suffice to show, that

x0, x1 and xi+1 ∈ f(Ji) for i = 1, . . . , n− 1.

As x0, x1 ∈ f(Ji) for i = 1, . . . , n− 1 has already been discussed, we are left with
the task of showing that the image of one of the intervals J1 to Jn−1 contains the
next point in the sequence, namely that xi+1 ∈ f(Ji) for i = 1, . . . , n− 1.
This is the case as f(xi) ∈ f(Ji) and as also at least one point on the other side of
the center lies in f(Ji) (x0 or x1) so does the whole set Of(xi).
Lastly (Š3) implies that xi+1 ∈ Of(xi) ⊆ f(Ji). In these relations we see, how the
spiraling character of the sequence that transfers to the series of intervals comes
into play.
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5.2 Proving the theorem through Štefan sequences

[

[
[

[
[

[]

]
]

]
]

]J0

J1
J2

J3
J4

J5

x0 = p x1 = qx2 x3x4 x5x6

Figure 5: Example of a 9-cycle containing a Štefan sequence

(3): Again as f(I0) contains x0 and x1 it suffices to show that xn−1, xn−3, . . . ∈ f(I0).
We know that xn−2 ∈ J0. Hence (Š3) implies f(xn−2) lying further away from the cen-
ter c than xn−1. Furthermore (Š2) implies the same holding true for xn−3, xn−5, . . .
.
In conclusion as the other endpoint of J0, xn, does not switch sides the points
xn−1, xn−3, . . . lie within f(J0).

Now that we ensured the covering relations given in figure 4 to be true, we can use them
to build cycles in a way similar to the first example in section 4.

Let l C m. Then we only need to cover three separate cases:

case 1: l = 1 We observe the 1-loop J1 → J1. As we have already seen several times
such a loop directly provides us with a fixed point.

case 2: l 6 n is even For this case we take a look at the l-loop:

J0 → Jn−(l−1) → Jn−(l−2) → · · · → Jn−1 → J0

This loop is elementary as it can not be followed by either endpoint of J0 which
where chosen to be part of the m-cycle. The second criterion for a loop to be
elementary has already been guaranteed. Therefore this loop provides us with a
periodic point of period l through Proposition 3.2.

case 3: m 6= l > n For this last case we recall the example of period 3 and use the
same trick, namely putting in as many copies of the arrow J1 → J1 as needed into
the loop J0 → J1 → · · · → Jn−1 → J0, providing us with the loop

J0 → J1 → J1 → · · · → J1︸ ︷︷ ︸
l−n+1 copies of J1

→ J2 → · · · → Jn−1 → J0.
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5 ŠTEFAN SEQUENCES PRODUCE CYCLES

With l − n+ 1 copies put in we obtain an l-loop. The endpoints of J0 will either
not land on themselves again in time if l < m or will land on xn too early if l > m.
Both cases make it impossible for the endpoints of J0 to follow the loop. Together
with our earlier observation that Int(J0) ∩

⋃n−1
i=1 Ji = ∅, by construction, we can

conclude the loop to be elementary, providing us again with a periodic point of
period l through Proposition 3.2.

�

We have now shown that as soon as we have found a Štefan sequence in a given cycle, we
can conclude the Sharkovsky Forcing Theorem. The next section will shed light on how
to find such a sequence and whether this is always possible.
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6 Finding a Štefan sequence

If every cycle had a Štefan sequence, Proposition 5.3 would already imply the theorem
altogether. Nevertheless there are cycles that do not contain such a sequence. We have
already seen an example of a cycle that cannot have one in section 4: Every point in the
6-cycle we discussed switches sides, which prevents (Š4) from being satisfied, as the last
point of a Štefan sequence cannot switch sides. This might be unfortunate, but in fact
the case where every point of a cycle switches sides is the only one, that prevents us from
finding the desired sequence of points. Providing a proof for this statement will be the
goal of this section.
The idea is to start with the two middle points and to then have a look at where the
point is mapped by f . Now the next point of the series will be chosen to lie on the same
side as this image and at least as close to the center to satisfy (Š3). Not just any point is
chosen but the one, that maps furthest away from the center. We proceed in that manner
until the algorithm eventually stops in a point that does not switch sides.
We are going to see now, how this approach leads to a Štefan sequence, given that at
least one point of the cycle does not switch sides.

6.1 The algorithm to find a Štefan sequence

Proposition 6.1. A cycle O containing more than one point always contains a Štefan
Sequence if at least one point does not switch sides.

Proof: We begin by narrowing down the points of the cycle to a set S ⊆ O containing all
candidates for the non-final terms of the Štefan Sequence.
For that we need the notion of the set M which we define to be the maximal O-interval
containing the middle points p and q of the cycle such that every point in M ∩O switches
sides.

Now as indicated before S consists of those x ∈ M ∩ O that are mapped further away
from the center c than any other point in Ox. Note that by this p, q ∈ S.

With S defined as above we can assign to each of its elements a successor in O using the
map σ : S → O as follows:

(i) If f(x) /∈ M , we assign σ(x) to be any point of Of(x) that does not switch sides.
Therefor σ(x) /∈ S and there is no more successor.

(ii) As long as f(x) ∈ M , we assign its successor σ(x) to be the point in Of(x) that
maps furthest away from the center. Note that the way S was defined we obtain
σ(x) ∈ S. This definition results in the following statement being true:

f(Of(x)) ⊆ Of(σ(x)).
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6 FINDING A ŠTEFAN SEQUENCE

As we have seen in the previous section, it is crucial to mantain the outward spiraling of
the series for (Š2) to hold true. As x ∈ M and its successor σ(x) ∈ Of (x), x and σ(x)
are ensured to lie on opposite sides of the center c. Therefore we only need to make sure
that σ2(x), which lies on the same side as x again, is further away from the center or
put differently σ2(x) /∈ Ox, as otherwise we do not obtain the desired monotony. We deal
with this issue with help of the next lemma:

Lemma 6.2. If there is an x ∈ S such that σ2(x) ∈ Ox, then all points of the cycle
switch sides.

Proof of Lemma: For σ2(x) to be defined in the first place and additionally in Ox we need
x, y := σ(x) and z := σ2(x) to be contained in S.

As we have seen above this implies the following two subset relations:

f(Of(x)) ⊆ Of(y) and f(Of(y)) ⊆ Of(z) ⊆ Of(x)

where the last one stems from the fact that z ∈ Ox and x ∈ S: x is mapped further away
from the center than any of the points on the same as x and closer to c and z happens to
be one of these points.

All of this results in the set Of (x) ∪ Of (y) being mapped into itself by f . Now that f
acts as a cyclic permutation on the set O the only f -invariant nonempty subset of O is O
itself.

We can therefore ensure O = Of(x) ∪ Of(y) which together with x, y ∈ S leads us to the
conclusion, that O ⊆M or in other words all points of the cycle switch sides.

�

So suppose there exists at least one point in the cycle that does not switch sides. Then
the contrapositive of lemma 6.2 implies that we cannot have both σ(p) = q and σ(q) = p.
This allows us to chose the middle points {p, q} as the starting points {x0, x1} of the
sequence and x2 := σ(x1) 6= x0.
We now define x2 := σ(x1) 6= x0 and as long as xi ∈ S we continue with xi+1 := σ(xi).
With the series defined we just need to make sure it satisfies the criteria (Š1) to (Š4).
As we have already seen that, as soon as (Š2) is ensured, the elements of the series are
pairwise distinct and therefore the sequence terminates. We label the last term xn and
now proceed by verifying that the sequence forms in fact a Štefan sequence:

(Š1) {x0, x1} = {p, q} by construction

(Š2) First of all p and q lie on opposite sites of the center. Furthermore the successor of
a point in the series is always chosen to lie on the other side of c, which ensures
the alternation of successive terms. Next x2 /∈ Ox0 (= {x0}) and by lemma 6.2
xi+2 = σ2(xi) /∈ Oxi . This ensures the outward spiralling or in other words the series
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6.1 The algorithm to find a Štefan sequence

being monotonous on both sides of the center and as already argued the termination
of the series, resulting in xn the last element of the sequence being welldefined.

(Š3) By definition it holds true that

for 0 6 i 6 n− 1 : xi ∈ S ⊆M

meaning that all points up to the penultimate switch sides. Again by definition we
made sure that xi+1 = σ(xi) ∈ Oxi . Hence the third criterion is met as well.

(Š4) Lastly we made sure that xn arises necessarily from (i) in the above definition of the
sequence and was chosen to be a point that does not switch sides. This concludes
the proof.

�

The last two sections combined lead us to the result that the Sharkovsky forcing theorem
holds true in case one point of the cycle given in the beginning does not switch sides,
as in this case the algorithm explained in the current section provides us with a Štefan
sequence. As seen in section 5 such a sequence enforces a series of intervals with a couple
of covering relations between them. Using these covering relations we can build loops of
all lengths shorter in the Sharkovsky order than the length of the given cycle which then
leads us to periodic points of these lengths, as we have seen in section 3.
It remains to show that in the case that every point of a given series switches sides, the
theorem holds true as well. This is going to be the content of the next section in which
we will finally conclude the theorem altogether.
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7 CONCLUDING THE PROOF

7 Concluding the Proof

In this section we finally conclude the Sharkovsky forcing theorem. As already explained,
the only case missing is the one of a cycle where every point switches sides. Our approach
to this issue is already known to the reader: We have seen the core concept in section
4, where we were given a 6-cycle. Similar to this special case we will look at f2 instead
of f using the doubling property of the Sharkovsky order. With this in mind we finally
conclude the theorem altogether by the following final proposition:

Proposition 7.1. An m-cycle O has an O-forced elementary l-loop of O-intervals for
each l C m.
By Proposition 3.2 this implies the Sharkovsky forcing theorem.

Proof: To proof this proposition we are going to perform an induction over m:

m = 1 : Proposition 7.1 is vaciously true in this case, as there is no number smaller than
1 in the Sharkovsky Order.

m > 1 : Suppose now proposition 7.1 is known for all cycles of length less than m. We
can assume every point in the cycle O to switch sides, as proposition 6.1 and 5.3 together
conclude the proof otherwise.

First of all we observe, that with L := min O the leftmost point of the cycle and
R := max O the rightmost point of the cycle, f switches the two sets OL and OR as by
assumption all points on the left side of the center are mapped to the right side and vice
versa. Therefore both f |OR

OL
: OL → OR and f |OL

OR
: OR → OL are bijections resulting in

both sets to have the same cardinality, meaning that there is an equal amount of points
on both sides of the center. With this result in the back of our head we now want to
remind the reader of the doubling property of the Sharkovsky Theorem, providing us
with the information that l C m if and only if either l = 1 or k C m/2 for some k ∈ NN
such that l = 2k.

Hence it remains to show that f has (i) an elementary 1-loop and (ii) an elementary
2k-loop for every k C m/2

(i) In this case we can just choose the O-interval [p, q] : This interval covers itself, as
both its endpoints switch sides. We recall that this already provides us with a fixed
point.

(ii) For the second case we begin with the observation that OL and OR ar cycles of
length m/2 for the second iterate f2. Using the induction hypothesis we can apply
7.1 to either cycle. Without loss of generality we will focus on OR.
f2 has an elementary O-forced k-loop for every k C m/2.
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Our goal now is to show how these loops give rise to elementary 2k-loops of f :
Consider the k-loop of OR-intervals:

J0
f2→ J1

f2→ · · · f
2

→ Jk−1
f2→ J0.

Similar to how we proceeded in the case of the 6-cycle in section 4, we will now
define the intervals J ′i for 0 6 i 6 k − 1 to be the shortest interval that contains
f(Ji ∩ O) ∈ OL. By construction the endpoints of these intervals are part of the
cycle O and therefore the intervals are O-intervals. Furthermore we directly obtain
the O-forced covering relation Ji → J ′i .
The statement of the proposition will follow once we show that this produces an
O-forced elementary 2k-loop for f of the form

J0
f→ J ′0

f→ J1
f→ J ′1

f→ · · · f→ Jk−1
f→ J ′k−1

f→ J0.

There are only two considerations we need to make: (1) that the covering relations
Ji

f→ Ji+1 (for convenience we set Jk := J0) are given and (2) that the loop is in
fact elementary:

(1) Since the OR-forced relation Ji
f2→ Ji+1 exists there are some ai, bi ∈ Ji ∩ O

such that
[f2(ai), f

2(bi)] ⊃ Ji+1.

But then there exist a′i = f(ai) and b′i = f(bi) in J ′i ∩ O which gives us

f(J ′i) ⊃ [f(a′i), f(b
′
i)] ⊃ Ji+1

as required.

(2) Consider a periodic point x ∈ J0 of f that follows the loop. As x follows also
the above elementary k-loop of f2 it has period k with respect to f2. This
results in all the iterates on the right side to be distinct.
Now as the intervals in the 2k-loop are alternating, so will be the iterates of
x under f . We can therefore conclude the 2k iterates to be pairwise distinct,
making the point x a periodic point of period 2k.
This concludes the proof.

�
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8 THE SHARKOVSKY REALIZATION THEOREM

8 The Sharkovsky realization theorem

h

Th

Figure 6: Truncated tent maps

Now as the Sharkovsky forcing theorem is proven we want to show the Sharkovsky
realization theorem:

Theorem 8.1. For every possible tail of the Sharkovsky order we can find some continous
map f from an interval into itself, such that said tail forms the set of periods of f .

Proof: To prove this statement we take a look at the family of truncated tend maps which
actually provides us with one map for every tail of the Sharkovsky order. For h ∈ [0, 1]
define:

Th : [0, 1]→ [0, 1], x 7→ min
(
h, 1− 2

∣∣x− 1
2

∣∣)
An equivalent and possibly a more accessible definition would be the following:

Th(x) =

{
min(h, 2x) x 6 1

2

min(h, 2− 2x) x > 1
2

First of all we consider the two special cases h = 0 and h = 1. T0 only has the point 0
as a fixed point and no further periodic points whereas T1 has a 3 cycle {27 ,

4
7 ,

6
7} and

therefore all natural numbers as periods as we have seen in section 4. Now for all cases in
between we observe the following lemma:

Lemma 8.2. Every cycle O ⊆ [0, h) of Th is a cycle of T1 and conversely every cycle
O ⊆ [0, h] of T1 is a cycle of Th.
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Proof: This is the case, as T1 and Th are identical on the interval [0, h). For cycles that
include h itself, we need to pay attention however, as these do not translate to T12. The
converse is not a problem though.

�

Now the idea of the proof is to define the following map, that assignes to every natural
number a value between 0 and 1:

h : N→ [0, 1], h(m) := min{max O : O is an m-cycle of T1}

Note that by inspection of the graph Tm1 we find exactly 2m fixed points, which is why
we can use the notion of “min” instead of “inf”. The beauty of the proof lies in the fact
that the function h(·) orders the natural numbers in the Sharkosky order resulting in the
set of periods of Th(m) to be exactly the tail starting at m. To assure this we observe the
following properties:

(1) Th has an l-cycle O ⊆ [0, h) if and only if h(l) < h. This follows directly from the
observed relation of cycles in Th and T1 and from the definition of h(l).

(2) The orbit of h(m) is an m-cycle for Th(m). This is also a direct consequence of the
definition of h(m).

(3) All other cycles of Th(m) lie within [0, h(m)). This is the case as the image of Th(m)

is [0, h(m)] and h(m) already has period m.

From these properties we can conclude this next and final lemma:

Lemma 8.3. It holds true that for all m, l ∈ N:

h(l) < h(m) ⇐⇒ l C m.

Proof:

⇐: Property (2) together with the Sharkovsky forcing theorem tells us that Th(m)

has an l-cycle for every l C m. Through property (3) we know that this cycle needs
to lie within [0, h(m)). Now h(l) < h(m) follows from property (1).

⇒: This case is equivalent to showing that l B m⇒ h(l) > h(m), making the case
symmetrical to the first one.

�

Now from this key property combined with the property (1) and (2) we conclude the set
of periods of the map Th(m) to be the tail of the Sharkovsky order that starts in m.

2Chapter 9 provides an example for this problem
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8 THE SHARKOVSKY REALIZATION THEOREM

There are two special cases remaining: the set of all powers of 2 and the empty set. For
the latter we just need to consider the translation x 7→ x− 1 on R. The former can be
concluded by defining h(2∞) := supkh(2k) ∈ [0, 1]. Here the above key property applies
again such that h(2∞) > h(2l) for all l ∈ N. By property (1) Th(2∞) has 2l-cycles for all
l ∈ N.
Suppose now that Th(2∞) has an m-cycle for some m that is not a power of 2. As m is
not a power of 2, the number 2m is smaller than m in the Sharkovsky order, assuring
that Th(2∞) also has a 2m-cycle.
As these two cycles are necessarily disjoint, at least one of them is contained in [0, h(2∞)).
This is because again the image of Th(2∞) is [0, h(2∞)] and the value h(2∞) can only lie
within one of these two cycles. In conclusion one of the two cycles needs to lie in [0, h(2l))
for some l ∈ N as the series h(2l) approaches h(2∞).
Now this implies either m or 2m is a power of two because of properties (1) to (3), which
constitutes a contradiction.

With these last two special cases this concludes the realization theorem altogether.

�

Remark. h(2∞) can in fact be computed by computing some values of the series h(2l).
In chapter 9 we will approximate h(2∞) in this manner and additionally see, why this
value is of interest for chaos theory.

31



9 Further observations on the Truncated Tent Maps

In the previous chapter, which provided a proof of the Sharkovsky realization theorem,
we introduced the family of truncated tent maps and saw only within this special family
an example for each possible tail of the Sharkovsky order.
Given a natural number m, the key idea was to find a certain height h(m) such that
every member of the family with a height greater than h(m) has at least one m-cycle3

and proving that h(·) brings the natural numbers into Sharkovsky’s order.

One may wonder now what h(m) looks like for different m ∈ N. When trying to compute
h(m) as it is defined in chapter 8, one quickly runs into problems, as all zeros of the
function Tm1 (x)− x need to be computed in order to find the periodic points of period m.
Unfortunately the mth iteration of T1 has 2m zeros, making the algorithm of exponential
complexity. This can easily be understood by having a look at figure 7.

Figure 7: 2,3 and 4 iterations of T1

As with every iteration we obtain double the amount of tents within the interval, the
number of zeros doubles in every step, which explains the complexity being exponential.

In this chapter we provide an algorithm that determines h(m) and display the results at
least for small numbers. These results are sufficient to determine an approximate value for
h(2∞), which is of interest because of how the Sharkovsky order relates to chaos theory.
Lastly we will see an example showing that h > h(m) is only a sufficient criterion for
finding periodic points and not a necessary one.

This chapter includes some plots of iterated truncated tent maps, so hopefully we can
convey the beauty and complexity of these functions.

3Unfortunately there can be a periodic point of period m even though h is smaller than h(m). We will
later provide an example for such a case.
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9 FURTHER OBSERVATIONS ON THE TRUNCATED TENT MAPS

9.1 Computing the critical height h(m)

We remember that given a natural number m the critical height from whereon we will
find periodic points of period m was defined in the following way:

h(m) := inf{max O|O is an m-cycle of T1}

In order to find h(m) we took the following approach with code written in Python:

1. Calculate a zero of Tm1 (x) − x using Newtons method between 0 and 1 with a
stepsize of δ4. We call that zero x0.

a) As x0 is a periodic point of period m or smaller, we can compute its cycle
and save it in a set. As sets do not save the same entry twice, checking the
cardinality of the set will then allow us to check whether x0 is in fact of
period m.

b) We then copy the set into a list (loc_list), which allows us to sort the elements
and therefore have the maximum of the cycle in the last entry.

c) If the set has the right cardinality and is not listed in a list of all cycles
(cycles_list) yet, we append the set to this list and append the last element of
loc_list (this was the maximum of our cycle) to a list of all maximum elements
called max_list.

d) We continue by calculating the next zero until we have eventually run through
the whole interval [0, 1].

2. Now everything we need to do is to sort the list of all maximums and print out the
first entry. This will be the smallest of all maximal elements of cycles of length m
or, in other words, h(m).

As already mentioned, this algorithm only works for very small m, as it is of exponential
complexity. Luckily enough, the biggest and the smallest number in the Sharkovsky order
are monadic, such that we can easily determine the range wherein all of the critical
heights can be found. On the following page a table of the numbers up to 16 can be
found with their respective critical height as well as the number of periodic points of
the respective period. Apart from that, the code realizing the above algorithm can be
seen. Unfortunately, for a big number of zeros the algorithm is already running into its
limits and does not provide exact solutions, as can be seen in the case of m = 16. h(16)

4The stepsize δ depends on how many zeros the function has for the mth iteration or in other words on
the size of 2m
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9.1 Computing the critical height h(m)

m h(m) number of periodic points

3 0.857 8
5 0.839 32
7 0.835 128
9 0.833 512
· · · · · · · · ·

2·3 = 6 0.8254 64
2·5 = 10 0.82534 1024
2·7 = 14 0.82487 16384
· · · · · · · · ·

2·2·3 = 12 0.82399 4096

· · · · · · · · ·
24 = 16 0.8236 65536
23 = 8 0.8237 256
22 = 4 0.8235 16

2 0.8 4
1 0 2

Table 1: Critical height for small periodic points

would have to be bigger than h(8), which is not the case in the results presented here5.
Nevertheless, for small values of m the algorithm seems to deliver results as expected and
the mentioned property of h(·) can be confirmed.

5Another plausible explanation for why the algorithm fails could simply be, that the function gets very
chaotic. As can be seen in the beginning of this chapter, the nth iteration of T1 has 2n tents squeezed
into the interval [0, 1]. So for the 16th iteration we need to put over 65000 tents into this rather small
interval. This means essentially, that for a very small difference in the starting values, there can be
enormously different outcomes, even after “only” 16 iterations. Someone familiar with chaos theory
could have already surmised this, as the comparably easy tent function has a horseshoe which results
in very chaotic behaviour.
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9 FURTHER OBSERVATIONS ON THE TRUNCATED TENT MAPS

1 # crea t e empty l i s t s f o r a l l c y c l e s and maximum elements
2 c y c l e_ l i s t = [ ]
3 max_list = [ ]
4

5 f o r i in tqdm( l i s t ( drange (0 , 1 , s t r ( d e l t a ) ) ) ) :
6 # compute a zero o f T_1^n(x )−x
7 x = newtons_method ( f , df , i , 0 . 0 1 )
8 l oc_set = s e t ( )
9 l o c_ l i s t = [ ]

10 # compute cy c l e o f x and wr i t e i t i n to loc_set
11 f o r j in range (0 , i t e r a t i o n s ) :
12 l oc_set . add ( round ( i t e rT ( j , x ) ,3 ) )
13 # copy s e t in to a l i s t and s o r t the l i s t
14 f o r y in loc_set :
15 l o c_ l i s t . append (y )
16 l o c_ l i s t . s o r t ( )
17 # i f x has per iod m and the was not mentioned yet , append the cy c l e to

the l i s t o f c y c l e s and the maximum to the l i s t o f maximums
18 i f l en ( loc_set ) == i t e r a t i o n s and loc_set not in c y c l e_ l i s t :
19 c y c l e_ l i s t . append ( loc_set )
20 max_list . append ( l o c_ l i s t [ i t e r a t i o n s −1])
21 # so r t the l i s t o f maximums and pr in t the f i r s t entry ( the sma l l e s t element

)
22 max_list . s o r t ( )
23 pr in t ( "h( " + s t r ( i t e r a t i o n s ) +" ) = " + s t r ( max_list [ 0 ] ) )

Algorithm to determine h(m) written in Python

To get an idea that the values in this table are close to true, we want to give some
graphical intuition, namely by plotting some of these iterations, once with a height slightly
lower and once with a height slightly bigger than the respective value of h(m) in the table.
The results can be seen in figures 8 and 9.

As can be seen in these images, as soon as the critical height h(m) is exceeded, we find new
fixed points of Tmh , suggesting that the values returned by the algorithm are reasonable.
In the case of m = 6 we even observe the function turning more complex with the increase
in h as new spikes appear in the graph, resulting in several new fixed points.

What is probably one of the most interesting observations about the behaviour of h(·)
is that h(N \ {1}) has a diameter of only roughly 0.05. Reading the proof provided in
chapter 8 one would suspect the values of h(·) to be found all over the interval [0, 1].
Apart from that, the values provided for m = 2k already give a rough idea of where h(2∞)
lies, which would be somewhere around 0.8238.
In both cases Sharkovsky’s theorem is used to conclude the result, giving an idea of some
possible applications. The second result is especially interesting when one knows more
about chaos theory, namely about topological entropy. [7] can be consulted for exact
information. The part interesting for us is the relation between topological entropy and
Sharkovsky’s order, which we will explore to some extent in the next section.

35



9.1 Computing the critical height h(m)

(a) Plot of T 3
0.85 (b) Plot of T 3

0.865

Figure 8: Comparison of 3 iterations with h slightly below and sligthly above h(3) = 0.857

(a) Plot of T 6
0.82 (b) Plot of T 6

0.83

Figure 9: Comparison of 6 iterations with h slightly below and sligthly above h(6) = 0.8254
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9 FURTHER OBSERVATIONS ON THE TRUNCATED TENT MAPS

9.2 Topological entropy and Sharkovsky’s order

First of all we want to introduce the notion of topological entropy. The concept was
first introduced by Adler, Konheim and McAndrew [6] and is expressed as a nonnegative
extended real number that measures the complexity of a discrete dynamical system6. For
the initial definition the underlying space X of the discrete dynamical system only needs
to be a compact topological Hausdorff space.
However we are going to focus on a later definition that requires the additional structure of
a metric on X. This definition by Bowen [1] might be less general but it has the benefit of
being more comprehensible and actually clarifying the meaning of topological entropy.

Definition 9.1. Let (X, d)X be a metric space and f : X → X a continuous function.

(i) For n ∈ N and ε > 0 we call a set E ⊆ X (n, ε)-separated for f if for all distinct
points x, y ∈ E we find k ∈ {0, . . . , n− 1} such that

d
(
fk(x), fk(y)

)
> ε

We refer to the maximal cardinality of an (n, ε)-separated set in X for f with
sn(f, ε).

(ii) Finally the topological entropy of a discrete dynamical system (f,X) is defined by

htop(f) := lim
ε→0

lim sup
n→∞

1
n log sn(f, ε) ∈ [0,∞]

Now one would have to show that this definition is welldefined by checking wether it
actually, but as this section is just meant to give a rough idea of topological entropy
and how it describes chaotic behavior we just included the definition for the sake of
completeness and hence do not want to go too much into detail. In case the reader is
interested in more information, [7] can be consulted.
Basically htop describes the rate in which the number of distinguishable orbits grows. In
that sense it is more than suited to give a sense of how complex the system gets. It is
fair to say that, as long as the topological entropy is equal to 0, the function is quite
manageable. But as soon as we arrive at a value great than 0, chaos arises and the function
turns far more complicated.
Now one may wonder how this definition relates to Sharkovsky’s order. In [7] the answer
to that question is described as “one of the most striking results in interval dynamics”:

6In this context by discrete dynamical system we mean a self-map f on some topological space X.
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9.2 Topological entropy and Sharkovsky’s order

Twenty iterations with h = 0.82 Twenty iterations with h = 0.84

Figure 10: Comparing higher iterations of Th around h(2∞) = 0.8238

Theorem 9.2. 7 For I a compact interval and f : I → I a continuous interval map the
follwing two assertions are equivalent:

(i) f has a periodic point whose period is not a power of 2,

(ii) f has positive topological entropy.

This means that as long as the Sharkovsky type of a function is smaller than 2∞ its
topological entropy is equal to 0. This result is in fact so powerful that Coppel uses it
as his definition for chaos, saying that a dynamical system is chaotic if it has a periodic
point of period other than a power of 2 [4].
The proof for this statement requires a deeper dive into chaos theory as it uses (among
others) the notion of horseshoes. It exceeds the purpose of this section. Again, if one is
interested in the complete proof, it is found in [7].
Now hopefully the reader got an idea what makes the value of h(2∞), which is approached
in the previous section, so interesting. It represents the border between chaos and non
chaos. Coming back to our example of the truncated tent maps we can see quite beautifully
how this theorem plays out in praxis8. Figure 10 shows the plots of a higher number of
iterations of Th with values of h slightly above and below the critical value h(2∞). It
illustrates clearly, how the tiny step over the “frontier of chaos” can make a huge difference
regarding complexity on the long run.

This result was simply too interesting to us to not be included in this thesis and we hope
that the reader agrees with us.

7This theorem cannot be attributed to a single person as it was proven in several steps by different
mathematicians. Among them Bowen and Sharkovsky.

8if you want to call it praxis
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9 FURTHER OBSERVATIONS ON THE TRUNCATED TENT MAPS

h = 0.795 h = 0.805

Figure 11: 2 iterations with h slightly below and above h(2) =0.8

9.3 Finding points of period 2

Now that we caught a glimpse of chaos theory and how this simple family of truncated
tent maps can illustrate one of its most striking theorems, we want to come back to the
initial question of when the function starts to have periodic points with a period greater
than 1 and present a small theorem and its proof which arose from my own contemplations
of these truncated tents.

Unfortunately, the height of a truncated tent map being above h(m) for some m ∈ N
is only a sufficient criterion and not a necessary one when it comes to finding periodic
points of period m. This means that, in some cases, even though the height in which we
cut off the tent is below h(m), we are still able to find an m-cycle. This is already true
for the case m = 2, as can be seen in figure 11.
We know however, thanks to Lemma 8.2, that any m-cycle found beneath a height of
h(m) has to contain the height h as a point. If it would not contain h, than it would be
a cycle for T1 as well and its maximal element would be necessarily smaller than h(m),
which would lead to a contradiction due to the definition of h(m). This can also be seen
in figure 11, where, in the first picture with h = 0.795, one of the fixed points lies on the
plateau, which means that this point has to be h. The plateaus are in fact the only areas,
in which T1 and Th are different from each other.
With this in mind we can formulate and prove the following theorem.
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9.3 Finding points of period 2

Theorem 9.3. Let h < h(2). Then the following statement holds true:

Th has a periodic point of period 2 if and only if Th(h) < h.

Proof:

⇒: Let O be a 2-cycle of Th. If it was O ⊆ [0, h), then according to 8.2, O would
transfer to a cycle of T1. But as all its elements (and hence particularly max O) are
smaller or equal to h and h < h(2) this would form a contradiction. As O ⊆ [0, h]
and O * [0, h), the height h has to lie in O.
This means that h is a 2-periodic point and is hence not a fixed point of Th. As
Th([0, 1])=[0, h] we can directly conclude Th(h) < h.

⇐: For this part we prove the contraposition. So let Th not have any 2-periodic
points. We need to prove that Th(h) = h. Without loss of generality we can assume
h > 1

2 , as otherwise
Th(h) = min(h, 2h) = h.

And we are already finished. Therefore Th(h) = min(h, 2− 2h). We can now easily
calculate the values with Th(h) < h:

Th(h) < h ⇐⇒ 2− 2h < h ⇐⇒ h > 2
3

So again w.l.o.g. we can assume Th(h) = 2− 2h. We go on by performing a second
iteration of Th, observing that

T 2
h (h) ∈ {h, 4− 4h, 4h− 2}.

As 4− 4h < h is equivalent to h > 0.8 = h(2)9 we can eliminate this case due to our
initial assumption. Furthermore 4h− 2 < h is equivalent to h < 2

3 , already resulting
in Th(h) = h as we have seen above. We therefore remain with the case T 2

h (h) = h.
But by our premise, Th does not have points of period 2, so the period of h has to
be a proper divisor of 2. Hence h is a fixed point of Th. �

Now from this proof we can extract the following corollary:

Corollary 9.4. Th has a 2-periodic point if and only if h > 2
3 .

Proof: In the case that h > h(2) this is clear and follows directly from our considerations
in chapter 8. Else the statement is a direct consequence of theorem 9.3. �

In figure 12 it can be seen that as soon as the height of the truncation is above 2
3 the

function gets addiotional bumps, which cause the 2-periodic points.
9If the reader mistrusts the algorithm stated in section 9.1, it is a fairly easy task to compute the value
of h(2) by hand.
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9 FURTHER OBSERVATIONS ON THE TRUNCATED TENT MAPS

h = 0.665 h = 0.67

Figure 12: 2 iterations with h slightly below and above 2
3

If we apply further iterations on the left side, we can observe the funtion approaching the
constant function f(x) = h. This is a nice example for another early theorem of chaos
theory, which was proven by Coppel [3] in the mid 1950’s. It states that every point
converges to a fixed point under iteration of a continuous map of a closed interval if the
map does not have a 2-periodic point. This is in fact the least chaotic way a function
can behave, further constituting to the association between chaos and the advance in
Sharkovsky’s order, which we caught a first glimpse of in section 9.2. So it is fair to say
that the truncated tent maps with a height less or equal to 2

3 are easily predictable, as all
its points approach h, whereas higher truncations get more and more complicated with
increasing height.
This concludes our little collection on further information on the truncated tent maps,
Sharhovsky’s theorem and chaos theory. We hope that this little excursion shed some
light on how Sharkovsky’s order is intertwined with chaos theory and how it can be useful
to predict the longtime behaviour of a function.
But above all we hope that this last chapter (and of course the whole thesis) was delightful,
as Georg Cantor put it so eloquently:

“The mathematician does not study pure mathematics because it is useful; he studies it
because he delights in it and he delights in it because it is beautiful.”
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